
Ethereum Threat Actors Part 1 —
DotNet Downloader using Ethereum
Transactions for C&C updates.

Executive Summary
As part of our research into how cybercrime actors using the
Ethereum blockchain for fraudulent means, we analyzed a DotNet

downloader that retrieves the malicious payload from URLs stored

inside Ethereum transactions. We analyzed the sample provided by a

German Security Researcher, Karsten Hahn @struppigel in this tweet.

Downloader analysis
This binary is a simple DotNet downloader, so we used ILSpy, an open-

source .NET assembly decompiler in association of QuoLab, our

collaborative and decentralized analysis platform to perform our

research.

Downloader information:

SHA-256:

2ae7e6d0c8b9c8b86a�af5ee9752761a4cb�3f418a81fe74f94

QuoScient GmbH

Feb 4 · 7 min read

•

Image 1: Tweet of Karsten Hahn about the downloader

http://twitter.com/struppigel
https://twitter.com/struppigel/status/1081188369839910914
https://github.com/icsharpcode/ILSpy
https://www.quoscient.io/en/solution/
https://www.virustotal.com/#/file/2ae7e6d0c8b9c8b86affaf5ee9752761a4cbff3f418a81fe74f9425b9387d4c0
https://medium.com/@quoscient?source=post_header_lockup
https://medium.com/@quoscient

25b9387d4c0.

Filename: mscheck32.exe.

VirusTotal: 43/70 AV engines detected it as Trojan.

Magic: PE32 executable for MS Windows (GUI) Intel 80386

Mono/.Net assembly.

The downloader is composed of four functions exhibiting di�erent

behaviors:

ConvertHex: Convert a Hexadecimal string to plaintext string.

GetAdditionalDataFromTransaction: Return JSON transaction

‘script’ �eld for a given TransactionID.

GetLastTransactionHashFromAddress: Return last

TransactionID for a given Ethereum Address.

Main: Download, store and run the malicious payload retrieved

from the URL stored on the Ethereum Blockchain.

Main Function

•

•

•

•

•

•

•

Image 2: List of functions decompiled by ILSpy

Image 3: Main source code decompiled by ILSpy

https://www.virustotal.com/#/file/2ae7e6d0c8b9c8b86affaf5ee9752761a4cbff3f418a81fe74f9425b9387d4c0
https://github.com/icsharpcode/ILSpy
https://github.com/icsharpcode/ILSpy

The main function �rst reads the text content from “update.txt” if the

�le exist.

Then, the function GetLastTransactionHashFromAddress is called

with the hardcoded value

“41AFf7B3a85fD4248C7BC7bE989ce968494170de” that correspond

to an Ethereum address.

If the last transaction of this address is considered as valid for the

binary, the function GetAdditionalDataFromTransaction is called and

the malicious URL is extracted from the transaction data.

The malware checks if it needs to be updated by comparing the URL to

the “update.txt” �le content. The binary veri�es its persistence by

checking that the �le “msan32.exe” is still stored on the system.

If there is an update, or if the malware is not persistent anymore, the

following operations are executed:

Cleaning: Kill every process related to ‘msan32’.

Persistence: Download the malicious payload and store it as

‘msan32.exe’.

Persistence: Save the URL to this malicious payload inside

‘update.txt’.

Infection: Execute the malicious ‘msan32.exe’ as a new process.

GetLastTransactionHashFromAddress
function

This function used the public Ethereum API of “blockcypher.com” in

order to get the last Transaction ID related of the hardcoded Ethereum

address (0x41AFf7B3a85fD4248C7BC7bE989ce968494170de).

A smart move from the author was to verify the value of the

“tx_output_n” �eld in the API request response. The blockcypher API

used this �eld to identify if the address is the sender or the receiver of

the transaction. By checking this value, the author only cares about the

transaction with 0x41AFf7B3a85fD4248C7BC7bE989ce968494170de

as the sender because that prevents his botnet from being hijacked by

someone else initiating a transaction to his address.

•

•

•

•

Image 4: GetLastTransactionHashFromAddress source code decompiled by ILSpy

https://github.com/icsharpcode/ILSpy

GetAdditionalDataFromTransaction
function

The “blockcypher.com” Ethereum API is used again to retrieve the

transaction information and the malicious URL is extracted from the

JSON “script” �eld.

Usually, the content of the ‘script’ �eld will be empty for a transaction

between two EoA (Externally Owned Account i.e. controlled by a

public/private keypair). However, Ethereum allows users to use this

�eld to send arbitrary data to another account.

In case of a transaction between an Ethereum account (EoA or Smart

Contract) that interacts with a Smart Contract, the ‘script’ �eld (input

payload) will be composed with a four bytes function signature

followed by the arguments of the function.

If you want to learn more about smart contract analysis, you will �nd

our conference slides about this subject in our media center.

Transaction analysis
At time of analysis (01/08/2019), only one transaction is associated to

the address 0x41AFf7B3a85fD4248C7BC7bE989ce968494170de.

This transaction on 21 August 2018 (05:27:42+UTC) is a transfer of

USD 4.05 from one of the HitBTC exchange addresses to the malware

address. We can assume that the malware author has a HitBTC account

and that this cryptocurrency exchange knows his (potentially fake)

identity. This transaction is surely a re�ll transaction allowing the

malware author to have some funds to send his update URLS.

Image 5: GetAdditionalDataFromTransaction source code decompiled by ILSpy

Image 6: Transactions associated to 0x41AFf7B3a85fD4248C7BC7bE989ce968494170de in etherscan.io

https://www.quoscient.io/en/media-center/
https://etherscan.io/address/0x41AFf7B3a85fD4248C7BC7bE989ce968494170de
https://hitbtc.com/
https://github.com/icsharpcode/ILSpy
https://etherscan.io/

There is no transaction with

0x41AFf7B3a85fD4248C7BC7bE989ce968494170de as a sender,

meaning that if someone is already infected by this downloader, no

active malicious payload have been downloaded and executed on the

a�ected system by this malware.

C&C Update Pricing
Sending arbitrary data is not di�cult, and requires just one line of code

if you use the Ethereum JavaScript API, web3js.

As an example, if we take this unrelated transaction to calculate the

price per C2 command:

‘Script’ �eld content:

0x68747470733a2f2f7777772e6662692e676f76.

URL string: ‘https://www.fbi.gov'.

Length string: 19.

Fee for this transaction: USD 0.003405.

This translates to around USD 0.00018 per character (i.e. USD 0.05
cents for a message at the length of tweet), which is a low price for

changing persistent C2 URL.

Of course, it is interesting to monitor this address and download the

malicious payload available at the URL, if future transactions occur.

HINTS:

If you want to analyze all the previous Ethereum transactions with

values in the ‘script’ �eld, you will retrieve every call to a Smart

Contracts (i.e. millions of results).

But, If you are only looking to view ‘script’ �elds containing a speci�c

•

•

•

•

Image 7: Re�ll transaction in etherscan.io

https://ethereum.stackexchange.com/questions/2466/how-do-i-send-an-arbitary-message-to-an-ethereum-address
https://github.com/ethereum/web3.js/
https://etherscan.io/tx/0x5c09efa829c1cba85ffc159bd30b99216cfc1a0ba1217c9558f68d430283abee
https://etherscan.io/

pattern, you can use Google BigQuery and search, in our case, for every

transaction starting with 0x68747470 (‘http’ in hexadecimal).

Blockcypher service
It is not the �rst time we saw the blockcypher API being used in

malware. Some versions (>=4.1.0) of the Cerber ransomware have

used it to retrieve transactions associated to bitcoin addresses (over

HTTP request to

http://api.blockcypher.com/v1/btc/main/addrs/BITCOIN_ADDRESS)

.

Image 8: BigQuery results with transaction input �eld starting with 0x68747470

Image 9: Blockcypher API correlation shown by QuoLab

https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
http://api.blockcypher.com/v1/btc/main/addrs/BITCOIN_ADDRESS
https://www.quoscient.io/en/solution/

As this service does not require any API key, it is potentially why

malware authors use it in the �rst place.

Future of Ethereum botnet
The usage of Ethereum for malware authors will surely be more

common in the future, mainly because public blockchain provides a lot

of security advantages for them:

Ethereum blockchain is public and immutable, meaning that

information (transactions or Smart Contracts) cannot be removed

by law enforcement.

Access to their C&C is secured due to the security behind

Ethereum authentication (public/private key pair).

Selling C&C control access can be achieved simply be changing the

ownership of a Smart Contract.

To help combat this threat or monitor malicious transaction history,

Threat Intel teams can obtain transaction history of actors.

Additionally, law enforcement can potentially identify actors behind

the botnet more easily if they request identity information to

cryptocurrency exchanges (like HitBTC in this case) and shutdown

botnets with access to the C&C account private key (Ethereum private

key).

Other researchers also show that it is also possible to use Smart

Contracts for botnet control. You can �nd more information using the

following resources:

ActiveBreach, powered by Ethereum Blockchain.

BOTRACT — ABUSING SMART CONTRACTS AND BLOCKCHAIN

FOR BOTNET COMMAND AND CONTROL.

UNBLOCKABLE CHAINS — IS BLOCKCHAIN THE ULTIMATE

MALICIOUS INFRASTRUCTURE?

Additionally, you can check out our open source tool Octopus to

analyze Ethereum transaction and reverse Ethereum Smart Contracts.

Moreover, please also �nd our conference presentations about this

subject in our QuoScient media center.

Conclusion
We are grateful to Karsten Hahn (@struppigel) for highlight this

binary, so that we could have a closer look at the mechanisms of

malware authors using Ethereum transactions. Having outlined the

most important �ndings above, we would like to take the chance to

make some precisions regarding his original tweet:

•

•

•

•

•

•

https://www.mdsec.co.uk/2019/01/activebreach-powered-by-the-blockchain/
https://sector.ca/sessions/botract-abusing-smart-contracts-and-blockchain-for-botnet-command-and-control/
https://sector.ca/sessions/unblockable-chains-is-blockchain-the-ultimate-malicious-infrastructure/
https://github.com/quoscient/octopus
https://www.quoscient.io/en/media-center/
http://twitter.com/struppigel

The downloader only uses Ethereum transaction to extract an

URL.

The downloader will download the malicious malware payload

from this URL.

The “script” �eld containing the URL is not custom, it’s standard in

Ethereum but unusual for transaction between two EoA accounts.

We hope that our analysis has provided more insight and is helpful in

spreading the word about this attack vector. We are happy if we have

contributed to make the world more digitally secure as our Digital

Active Defense vision guides us to do so.

Many thanks and I am happy to keep in touch on this subject.

Patrick Ventuzelo, Security Researcher at Quoscient

Twitter / Medium / LinkedIn

Indicators of Compromise
DotNet downloader:
SHA-256:
2ae7e6d0c8b9c8b86a�af5ee9752761a4cb�3f418a81fe74f9425b9387

d4c0

URLS:
https://api.blockcypher[.]com/v1/eth/main/txs/

https://api.blockcypher[.]com/v1/eth/main/addrs/

Ethereum address:
0x41AFf7B3a85fD4248C7BC7bE989ce968494170de

Cerber binaries:
SHA-256:

56f41afc8f025597659f11f59b191e66bd6c6525313cf3c0356c404

90722b7c5

e58185d68dcfb67996c8443aafd932c9e6925f8fbfca5e2ad535ebb

75a4ca8be

39f50b02efde61f49cabbe47a68d483d39e95b307aad7b059b9e47

9558e171ed

c04dc76f66029ed71d0c5�524585264b9e171d25222c06b79bb1c

98779f6f6e

6df046b6e9c28b527d7e19733915371b1c058124fd4ad2dbeee81

74f8c95224a

20979dde8617b27344bccfb4e6c6413b6abf5f045a09e00fa2ea6b

64c9b19f1b

•

•

•

•

•

•

•

•

•

•

https://twitter.com/pat_ventuzelo
https://medium.com/@ventuzelo.patrick
https://www.linkedin.com/in/patrick-ventuzelo-82135767/

e7f7e16f31471604a479316aec38cfe9ea6596a4b8ce680296e053

fa9b0e2e24

22fd59f3e7f2b3c790b1cd19d99df5c42a6a923e25fca197aa148bb

53af03bb5

8255164b5f8da63db12fa1a7fefc7fdb3eac1f440931ee157f9956a

1395ca16f

57c81e6cb3d92acfc7870ef9713eafac924f9cc4adf605d5e1a50e06

b3f3adc9

8d4cd71eb1fb43452bc8efc1a5a778c088a2b6602452266e82acb9

48514e4076

bc7164621a64144d01d4ab488185c5d3730c540603a9deaa1f294

88b518abbe1

19a18990c26f0600f1937676672040efa8184fd4247b583c49765

5d4b4�7257

ed63a9cd537df84178559086eae92ab46eed063739715070e6329

e9430f36bd4

ae7d4f8198e39d05390f7c1c3b3c626bc99d571abd00aac21ce211

9e1e1fd602

d79b8397885d3994929967bfb0f8f6ca2c2bf0b52cb7dd45fb9a97

31e4edc2fb

URLS:
http://api.blockcypher[.]com/v1/btc/main/addrs/

http://api.blockcypher[.]com/v1/btc/main/txs/

Bitcoin addresses:
17gd1msp5FnMcEMF1MitTNSsYs7w7AQyCt

1HTDy9SkfhwaNCXFA8wFCvN53f3iGpm8kb

1ML94w1SCudkiFHaEwYqTmKGTkywxVBuZg

•

•

•

•

•

•

•

•

•

•

