Ethereum Threat Actors Part 2— ClipboardWalletHijacker Malware Still Active.

QuoScient GmbH Feb 18 · 5 min read

Executive Summary

In part two of our mini-series (see part #1) describing **how cybercrime actors are using the Ethereum blockchain for fraudulent means**, we analyze a clipboard hijacker malware targeting Bitcoin and Ethereum users. This malware, renamed **ClipboardWalletHijacker** by Qihoo360 Security Center, was first discovered in June 2018, after having infected 300 thousand computers within a week.

Qihoo360 provided an Ethereum address

(**0x001D3416DA40338fAf9E772388A93fAF5059bFd5**) and using this information, we pivoted off the address and obtained one variant of the binary we analyzed for this post: a6d3a5dac6c195d4d5e07fef218fd17b50d3384142af246fb6bc631

14b54b613.

In this blogpost we provide a quick look at the binary's behavior, while focusing our analysis on the hijacked Ethereum transactions. By doing this, we identify how much potential profit the author derives out of this malware, as well as, what crypto exchange the author used.

Quick ClipboardWalletHijacker Analysis

Binary information:

- SHA-256: a6d3a5dac6c195d4d5e07fef218fd17b50d3384142af246fb6b c63114b54b613
- VirusTotal: 42/71 AV engines detected it as a Trojan (02/13/19)
- Magic: PE32 executable (GUI) Intel 80386, for MS Windows

The overall Trojan behavior is the following:

- Creates Mutex with unique name "llsdkj3e0pr"
- Creates and reads Registry keys
- Monitoring continuously the content of the clipboard
- Checks if the clipboard content is an Ethereum address and changes it
- Checks if the clipboard is a **Bitcoin address and changes it**

Leveraging QuoLab's Malware Tool, we find that the binary is composed of eight functions, three of which have been automatically identified by the tool as **modifying sensitive data** (Clipboard and Credential). These three functions are managing all the clipboard hijacking mechanisms (modification of clipboard content). Even further, the QuoLab malware tool found multiple binaries containing the exact same functions (**Count column**) meaning that we have in our database multiple variants of this malware in this case.

👄 Malware Too

Hashes

MD5: 2565aa83a8997fdbfb66d8b187de0e23 SHA1: 96ee1e3b20edec0f6345f8d15a30b76ad22a33b1 SHA256: a6d3a5dac6c195d4d5e07fef218fd17b50d3384142af246fb6bc63114b54b613

Tags

Sensitive Data : Clipboard Status : In Progress ATT&CK : T1115:Clipboard Data

Malware

clipbanker

Functions(8) 🏌	Count 🎗	Tags
□ sub_402458	4297	
□ sub_402139	3	
□ sub_402072	2	Action : search Component : Memory Action : modify Sensitive Data : Clipboard
entry	0	Component : Mutex Action : search Component : Timer Action : read
□ sub_402280	1	Action : read Component : Timer Action : search Component : Registry Action : write Action : manage
□ sub_402187	2	Action : read Component : Registry Action : modify Action : manage
□ sub_402000	1	Action : search Action : modify Sensitive Data : Clipboard
□ sub_40248e	2	Sensitive Data : Credential Action : modify Component : Registry Action : write Action : manage Component : Registry

Image 1: QuoLab Malware Tool analysis

Looking at the malware start function, the string "0x001D3416DA40338fAf9E772388A93fAF5059bFd5" is pushed onto the stack before calling the **sub_402072** function.

II 🖌						
push call	<pre>offset String ; "0x001D3416DA40338fAf9E772388A93fAF5059b" clipboard_modif_sub_402072</pre>					
add	esp, 4					

Image 2: Start function calling sub_402072 with Ethereum address as parameter in IDA Pro

This hardcoded string is a valid Ethereum address with proper upper and lower case variation of A-F hexadecimal letters checksum.

```
1 int cdecl clipboard modif sub 402072(LPCSTR lpString)
  2 {
   3 int result; // eax
  4 int v2; // eax
  5 int v3; // ST08 4
     CHAR *v4; // eax
   6
     CHAR String1; // [esp+4h] [ebp-404h]
  7
    char v6; // [esp+5h] [ebp-403h]
  8
      int16 v7; // [esp+401h] [ebp-7h]
  9
 10 char v8; // [esp+403h] [ebp-5h]
 11 HGLOBAL hMem; // [esp+404h] [ebp-4h]
 12
13
     String1 = 0;
14 result = 0;
15
      memset(&v6, 0, 0x3FCu);
16
     v7 = 0;
• 17
     v8 = 0;
18
     if ( lpString )
 19
     {
       result = lstrlenA(lpString);
20
21
        if ( result \geq 10 )
 22
       {
         lstrcpyA(&String1, lpString);
23
24
         v2 = lstrlenA(&String1);
25
         hMem = GlobalAlloc(2u, v2 + 1);
         v3 = lstrlenA(&String1) + 1;
26
         v4 = (CHAR *)GlobalLock(hMem);
27
28
         lstrcpynA(v4, &String1, v3);
         GlobalUnlock(hMem);
29
         OpenClipboard(0);
30
31
         EmptyClipboard();
32
         SetClipboardData(1u, hMem);
33
          result = CloseClipboard();
  34
       }
 35
      }
36 return result;
37 }
```

Image 3: Clipboard hijacking function decompiled with IDA Pro-Hex-Rays Decompiler

The function (**sub_402072**) is in charge of emptying the clipboard (**EmptyClipboard** WinAPI) and replaces its content with the hardcoded address (**SetClipboardData** WinAPI).

Hijacked Ethereum Transactions

So far, this Trojan has stolen about 24 Ether over a year, estimated to **USD 10.000** at the time of writing. Further, at least 147 Ethereum token transactions have been hijacked as well, but not converts back from token to Ether by the malware author for the moment.

Transactions For	Home / Address / Transaction						
A total of 86 Txns found						First Prev Page 1 of 2	Next Last =
TxHash	Block	Age	From		То	Value	[TxFee]
0x6fef9e736ba3929	7147834	5 days 7 hrs ago	0xeba290cf248cb14	IN	0x001d3416da4033	0.09 Ether	0.00021
0x06c87c99284d00	6744127	75 days 8 hrs ago	0x001d3416da4033	OUT	0x8cf77ffe0bdafa09	1.05 Ether	0.000861
0x73b835a8f9a5098	6736500	76 days 14 hrs ago	Yobit	IN	0x001d3416da4033	0.495 Ether	0.00105
0xcc74201cf38008a	6674048	86 days 19 hrs ago	0xdd6ec9f00a15a15	IN	0x001d3416da4033	0.352 Ether	0.000084
0xc16a997690fb93a	6599247	99 days 2 hrs ago	0xec0ae07058ff602	IN	0x001d3416da4033	0 Ether	0.000168
0xd8f47aed067fa6d	6572783	103 days 10 hrs ago	0xec0ae07058ff602	IN	0x001d3416da4033	0 Ether	0.000105
0x86bcdb694f8eb15	6569636	103 days 22 hrs ago	0x340d693ed55d7b	IN	0x001d3416da4033	0.217459910787841 Ether	0.00125
0x3b551676179a2e	6568443	104 days 3 hrs ago	0x001d3416da4033	OUT	0x791d4d2de58b41	4.9 Ether	0.000861
0x1c532a20d138f4a	6568332	104 days 3 hrs ago	0x001d3416da4033	OUT	0xf296f14a1ccad9e	4 Ether	0.000861
0xdd2d2d2b6b4c7d	6568274	104 days 3 hrs ago	0x001d3416da4033	OUT	0xbe0c757a20ef361	1 Ether	0.000861
0xb602152da6c0b7f	6543587	108 days 4 hrs ago	0xc5337646c0f971c	IN	0x001d3416da4033	0 Ether	0.000168
0x3a82c11a50b5ed	6543572	108 days 4 hrs ago	0xb6598e6a45e5da	IN	0x001d3416da4033	0 Ether	0.000168
0x5678fb1d66b5777	6542862	108 days 7 hrs ago	Bittrex_1	IN	0x001d3416da4033	1.83412715 Ether	0.00105
0x683f8928b5252bf	6384564	134 days 2 hrs ago	0x9a755332d874c8	IN	0x001d3416da4033	0.166293 Ether	0.001092

Image 4: List of 0x001D3416DA40338fAf9E772388A93fAF5059bFd5 transactions (02/04/2019) on etherscan.io

More than 35 Ethereum transactions have been hijacked since the June 2018 blogpost from Qihoo360, and, based on all the transactions (standard + ERC20 token), we can determine that over **180 unique Ethereum users** have been robbed.

One alleged victim even wrote a comment on etherscan.io when they noticed an unusual behavior occurred when they did a copy paste (i.e. the clipboard hijacking process): I don't know I tought that it's because of malware or something which i don't understand.

the eth address was change by itself when I do copy paste, my foul that I just realize after the witdrawal confirmation.

I hope you read this comment, and consider to return it back to me. I know good people are still out there.

pls return to my eth address below : 0x890e1c8aca14e9a3c42d9555e31a4ea82f0cf7da

Thank you

Image 5: Victim commentary on etherscan.io

Cryptocurrency Exchange Used by the Actor

Image 6: QuoLab fact tool analysis – Ethereum interactions

The malware author has routed the totality of his gain through nine different swap Ethereum addresses. Based on their transaction history, we note: (1) that these **addresses were never used prior** to the author using them for fraud; and (2) the addresses **immediately transfer the stolen Ethers** once the crypto was received. The analyzed payout transactions (listed below) lead ultimately to the same Ethereum address owned by the Swiss cryptocurrency exchange Bity.com.

List of payout transactions going to Bity.com:

- 0xc6f01e8d907e63395338818c4b8ef9cde137c58edcaf7ea3f198d dbf7b234b64
- 0x7a8c4f75c3e4e59a23d884735b295f99b897d7ed435da0557b4
 4e5a4b7bf720a
- 0x1fd15d0806646d090544bf0c9cde2f288e4957d21d68e6581d1
 773190291a2bb
- 0xa86a2b3eef7a6cbcaffb0dd7ef3895486349370e2cba92ce8bca6 15aa28c4152
- 0xc7c019de95469691cac10497aec65d26e254029bf5d78495527 191764b9da147
- 0x9461f4fdd7b8faa291776a15b9b694ddc9ea0923dd4dee7f6423 fe0258d215b2
- 0x5378a48a7a2de6069485a6a42f027b799045077cf977ff706baf 36c5a07772ff
- 0xd2184fb7f639092e5ed1c43000003689209dc0e11fd8400dab0 8030025042df9
- 0x93f16018749374009bf29a7ae48f19498690145f4c4f886459b1 84d025a6c1e2

The Bity exchange may be the preferred exchange for the Threat Actor due to its limited verification process for making transactions and conversions. For example, the exchange asks you to provide a phone number at minimum if you want to sell or convert cryptocurrency. However, this verification process can be bypassed using an online SMS receiver, for example. Additionally, Bity has a daily and yearly limit set to **CHF 5.000** if the user profile is not complete, meaning that the malware author must provide some (probably fake) information to increase their limit.

Packers & Variants

During our research, we have found some variants of the malware containing the same hardcoded Ethereum address using different basic off the shelve packers such as **UPX and ZProtect** (hashes in "Indicator of Compromise").

Image 7: QuoLab screenshot of the similarity between 2 variants of the malware

Focusing on the overlaps between this two samples, it is easy to identify similarities:

- Same Ethereum address and not the same Bitcoin addresses
- Eight functions on both binaries with 7/8 identical
- Same import table

Conclusion

The ClipboardWalletHijacker malware is still active on Ethereum and Bitcoin exchanges with around BTC 1.6 stolen using at least the five Bitcoin address listed under "Indicator of Compromise".

Clipboard wallet hijacking is a stealthy and long-term attack

method since the infected users will possibly identify the infection postmortem, only after having realized fraudulent cryptocurrency transfers occurred.

Image 8: Activity diagram of 0x001d3416da40338faf9e772388a93faf5059bfd5 on bloxy.info

The **ClipboardWalletHijacker** is rather profitable considering the skill level to program it is low since less than 100 lines of code are required.

This type of malware is also no longer limited to Windows Operating Systems since recent samples have been found on Android as well.

We hope that our analysis has provided some insight into actors leveraging and abusing crypto currencies and this attack vector in particular.

Your feedback is as always welcome!

Patrick Ventuzelo, Security Researcher at QuoScient

Twitter / Medium / LinkedIn

Indicator of Compromise

SHA-256:

- a6d3a5dac6c195d4d5e07fef218fd17b50d3384142af246fb6bc63 114b54b613
- 4c31b103cec026af93e88c88b5dfeceabed3861ee0c19f15daeb564 5e13fd530
- 590124d08b68e45528f2db611adba930b603a66e231035e8353f
 b809eb2cc058
- 91148c52430c091fb5dd0a129d27980e56cf652d4c855a2d52c85 fc6755fc223
- 16275d8caac80ebce22d81e10a940d785275634b8772e3cd36bab
 2ffe66b8dd9 (UPX)
- f5054b5fde16c7fc4efa714916f316d7b4933a6962d49e8a39d596
 b7273622c1 (ZProtect)
- cf78d93fdc893d3769932029dff0a56a6ce314c2d22fbb762570de 8aa4776179 (UPX)

Mutex:

• llsdkj3e0pr

Ethereum address:

• 0x001D3416DA40338fAf9E772388A93fAF5059bFd5

Bitcoin addresses:

- 13bRgHqz1PbYNsB9RmDJA2MJH9UnjgXZBh
- 1QJ5MoUPTKF8f7pc5hK59nKtXBpDQaJP2v
- 1Hz7TagSRtcRRAR5DjaoZ9r2NU4WZtbXBc
- 19gdjoWaE8i9XPbWoDbixev99MvvXUSNZL (from Qihoo 360 blogpost)
- 1FoSfmjZJFqFSsD2cGXuccM9QMMa28Wrn1 (from Qihoo 360 blogpost)