
WebAssembly Security HOME TRAININGS SERVICES BLOG ABOUT

WebAssembly Security

Analysis of Google Keep WebAssembly module Analysis of Google Keep WebAssembly module

Last month, i was at REcon Montreal to give my training about WebAssembly Security and after some
discussion people always ask me this question:

Is WebAssembly already used in the wild?

The answer is of course YES and some WebAssembly modules are potentially running right now in your
browser if you are using Google web services. Recently, Google was using WebAssembly for the beta version
of Google Earth but also in production for services like Google Keep.

In this blogpost, we gonna reverse partially the WebAssembly module loaded by Google Keep, determine its
purpose and extract a maximum of information for future complete analysis. Let’s Go!

Google Keep Wasm Module & JS File Extraction

Usually, in order to run a WebAssembly module in your web page, you will fetch a wasm �le and instantiate the
module using dedicated JavaScript API. Once it’s done, you will be able to call the module exported functions
directly from JavaScript.

Regarding the Google Keep web app, the WebAssembly module “ink.wasm” is fetch (image below – left) and
instantiated by the mini�ed JavaScript �le ink-loader.js. (image below – right)

Based on JS functions names, this JavaScript �le seems to has been generated automatically by emscripten.

https://webassembly-security.com/
https://webassembly-security.com/
https://webassembly-security.com/trainings/
https://webassembly-security.com/services/
https://webassembly-security.com/blog/
https://webassembly-security.com/about/
https://webassembly-security.com/
https://recon.cx/2019/montreal/training/trainingwebassembly.html
https://webassembly-security.com/trainings/
https://earth.google.com/web/?beta=1
https://blog.chromium.org/2019/06/webassembly-brings-google-earth-to-more.html
https://www.google.com/keep/
https://developer.mozilla.org/en-US/docs/WebAssembly/Loading_and_running
https://keep.google.com/u/0/
https://emscripten.org/index.html

WebAssembly Module Reversing

One of the �rst step when reversing a WebAssembly module is to
convert the wasm binary (.wasm) to his text format (.wat/.wast)
representation. wasm2wat is the perfect tool for this job.

wasm2wat ink.wasm -o ink.wat

The output �le (ink.wat) is a text �le with around 1.5 Millions of lines.

Based on mini�ed imported & exported function names (image – right),
we can con�rm that the module has been compiled by emscripten and
the optimization �ag (-O3)

Extract Build Information

This module contains a Data section and the content of this section will be used to initialized the linear
memory i.e. an ArrayBuffer shared between the module and the loader script (ink-loader.js).

https://webassembly-security.com/wp-content/uploads/2019/07/2019-07-16-164612_650x318_scrot.png
https://webassembly-security.com/wp-content/uploads/2019/07/2019-07-16-164443_639x462_scrot.png
https://github.com/WebAssembly/wabt#running-wasm2wat
https://emscripten.org/docs/optimizing/Optimizing-Code.html
https://webassembly-security.com/wp-content/uploads/2019/07/2019-07-16-171946_472x629_scrot.png

At the beginning of this module Data section, we get a lot of details about how the module has been built:

WebAssembly Toolchain: emscripten-wasm
Building date: Jun 25 2019 06:29:13
Google prod server: votl8.prod.google.com
Project path: third_party/sketchology/public/js/wasm
Google building software (Bazel): Blaze, release blaze-2019.06.17-2

At this point, I �rst tried to retrieve the source code of the WebAssembly module by searching the project path
on the web. I found the repository of Chromium 66 (66.0.3359.158 ~1 year old) but without C/C++ source
code inside. On the master branch, there is no reference of sketchology anymore but we get information about
what is Ink. Finally, the github repository (https://github.com/google/ink) return a 404 error.

What is Sketchology and Ink?

After some research, Sketchology refers to an IOS application called “Sketchology Review”. This application
isn’t available anymore, the twitter account is inactive and the o�cial website (sketchologyapp.com) is down
but you can �nd a copy using the WayBack Machine. On the LinkedIn’s pro�le of the creator, we can �nd
that “Sketchology is the �rst vector drawing app with realtime natural media brush effects like blur or
watercolor.”

On the other hand, “Ink is a software library enabling Google applications to let their users express themselves
using freehand drawing and handwriting”. This library is also used in Google Canvas released end of 2018
(source).

So, it seems that Ink is the evolution/successor of Sketchology and Google Keep use this module ink.wasm
when the user want to draw a note (image on top).

To verify our hypothesis, you can debug the WebAssembly module and set breakpoints using the Developer
console. In the image below, my breakpoint was triggered when i tried to create a new drawing note.

https://webassembly-security.com/wp-content/uploads/2019/07/2019-07-16-224858_1352x440_scrot.png
https://bazel.build/
https://chromium.googlesource.com/chromium/src/+/66.0.3359.158/third_party/ink/sketchology/public?autodive=0%2F%2F%2F%2F%2F%2F/
https://chromium.googlesource.com/chromium/src/+/master/third_party/ink/
https://twitter.com/SketchologyApp?lang=en&lang=en
http://web.archive.org/web/20150519044007/http://www.sketchologyapp.com:80/
https://canvas.apps.chrome/
https://9to5google.com/2018/12/20/google-chrome-canvas-drawing-ink/

Reversing Protobuf Encoded Blobs

Still inside the module data section, you will �nd multiple chunk of Google Protobuf encoded blobs (image on
the top).

“Protocol buffers are Google’s language-neutral, platform-neutral, extensible mechanism for serializing
structured data – think XML, but smaller, faster, and simpler.” – source

Those chunk of bytes can be reversed/deserialized using tools such as protobuf-inspector (image at the
bottom). Source code of the more generic protocolbuffer �le can be found directly on the github repository of
the protobuf project (like descriptor.proto)

This kind of information is particularly useful if your are doing pentesting/vulnerability research on the server-
side web API.

https://webassembly-security.com/wp-content/uploads/2019/07/2019-07-17-205532_1084x227_scrot.png
https://webassembly-security.com/wp-content/uploads/2019/07/2019-07-18-113136_642x148_scrot.png
https://developers.google.com/protocol-buffers/
https://github.com/jmendeth/protobuf-inspector
https://github.com/protocolbuffers/protobuf/
https://github.com/protocolbuffers/protobuf/blob/master/src/google/protobuf/descriptor.proto

Extract WebGL Vertex Shader Structure

Another part of the data section contains complete piece of codes (bottom image) with variables and main
functions. This code is a WebGL “Vertex shader structure” and it will be loaded by WebGL building shader
functions at runtime.

https://webassembly-security.com/wp-content/uploads/2019/07/2019-07-18-114647_720x403_scrot.png

If you want to learn more about WebGL and Vertex shader , take a look at those links:

Compiling a C++ OpenGL Project for OS X and WebAssembly
WebGL Fundamentals
The Book of Shaders
Canvas �lled three ways: JS, WebAssembly and WebGL
What Do You Mean by “Shaders”? How to Create Them with HTML5 and WebGL

Absolute path, Error messages, Mangling & Constant names

Finally, we reach the last part of this module data section that is for me
the most interesting one. Inside you will �nd more than 5 thousands
strings like:

Absolute project �les path
(“third_party/sketchology/engine/public/sengine.cc”)
Error messages (“Could not add image data, no URI speci�ed.”)
Mangling functions name (“N3ink26ElementAnimationControllerE”)

https://webassembly-security.com/wp-content/uploads/2019/07/2019-07-18-131143_797x579_scrot.png
https://www.mtmckenna.com/posts/2019/04/08/opengl-wasm
https://webglfundamentals.org/
https://thebookofshaders.com/
https://compile.fi/canvas-filled-three-ways-js-webassembly-and-webgl/
https://www.sitepoint.com/mean-shaders-create-html5-webgl/

Constant names (“GL_GEOMETRY_SHADER”)
Just with those strings, we can reconstruct the project tree (image on
the left) and associate the corresponding error messages, mangling
names and constants for each �le.

Going Deeper & Conclusion

If you (really) want to reverse completely this module, you will need �rst to match the previous information
(WebGL, debug strings, …) with memory accesses/offsets (image on the top).

Then, you can determine the functions prototype (mangling names + arguments) and associate each
WebAssembly functions with C++ source �les. Finally, you can try to decompile your new labeled module into
C code using tool like wasm2c.

Nevertheless in this blogpost, we have at the end:

Extract a WebAssembly module and related JS �le.
Convert a module to the text format representation.
Found build information
Determine the origin and the purpose of the module.
Reverse Google Protobuf encoded blobs.
Extract WebGL shader source code.
Reconstruct the project tree

https://webassembly-security.com/wp-content/uploads/2019/07/2019-07-18-120945_477x649_scrot.png
https://webassembly-security.com/wp-content/uploads/2019/07/2019-07-18-133722_688x174_scrot.png
https://github.com/WebAssembly/wabt/tree/master/wasm2c

Find debug strings to reverse completely the module (with more time)

All the �les (wasm, js) and extracted information are available in this github repository.

If you want to learn about WebAssembly security from module reversing to WebAssembly VM vulnerability
research, you should consider taking one of our trainings. We also offer on-site trainings for companies,
starting at just 5 participants.

Patrick Ventuzelo / @Pat_Ventuzelo

   

UPCOMING TRAININGS REQUEST ON-SITE QUOTE

© 2019 - Patrick Ventuzelo | Contact | Trainings

https://github.com/pventuzelo/google_keep_wasm
https://webassembly-security.com/trainings/
https://webassembly-security.com/on-site-training/
https://twitter.com/Pat_Ventuzelo
https://twitter.com/Pat_Ventuzelo
https://www.linkedin.com/in/patrick-ventuzelo-82135767/
https://github.com/pventuzelo
https://patrickventuzelo.com/
https://webassembly-security.com/toorcon-2019-training/
https://webassembly-security.com/on-site-training/
https://patrickventuzelo.com/
https://webassembly-security.com/trainings/#contact
https://webassembly-security.com/trainings/

