
1/29/2020 Fuzzing JavaScript WebAssembly APIs with Dharma/Domato (Chrome/v8)

https://webassembly-security.com/fuzzing-wasm-javascript-dharma-chrome-v8/ 1/8

WebAssembly Security

Fuzzing JavaScript WebAssembly APIs
using Dharma/Domato (on Chrome/V8)

First of all, Happy new hacking year everyone

I got asked multiple time if fuzzing WebAssembly APIs of Javascript engines is complicated, so
here is a short tutorial using Dharma (but you can use Domato if you prefer).

In this blogpost, I will �rst detailed WebAssembly Javascript APIs supported by major browsers.
Then, I’ll explains how to use Dharma to generate valid Javascript �le to fuzz WebAssembly APIs.
Finally, I’ll show an easy way to execute those generated testcases over ASAN build of
Chrome/V8.

Just a quick reminder before we start, if you are interested about WebAssembly security and
fuzzing WebAssembly Browsers/VMs, my next publics trainings will be in:

29 March – 01 April 2020 / Singapore ==> SHACK/WhiskeyCon.
20 – 22 April 2020 / Amsterdam ==> HITB.
01 – 04 August 2020 / Las Vegas ==> Ringzer0.
Onsite trainings ==> here.

https://webassembly-security.com/
https://webassembly-security.com/trainings/
https://www.coseinc.com/shack/training#training-SH2041
https://conference.hitb.org/hitbsecconf2020ams/sessions/3-day-training-4-webassembly-security-from-reversing-to-vulnerability-research/
https://ringzer0.training/webassembly-security.html
https://webassembly-security.com/on-site-training/

1/29/2020 Fuzzing JavaScript WebAssembly APIs with Dharma/Domato (Chrome/v8)

https://webassembly-security.com/fuzzing-wasm-javascript-dharma-chrome-v8/ 2/8

1. WebAssembly & Web-Browser CVEs

Long story short, WebAssembly (abbreviated Wasm) is a new portable, size- and load-time-
e�cient binary instruction format for the web. It has been designed by members of people
representing the four browsers, Chrome, Edge, Firefox, and WebKit. WebAssembly is now
supported/enabled by default by every major browsers (both on Desktop and Mobile) and
WebAssembly module are executed through their respective javascript engines such as v8,
spidermonkey, jsc, etc.

As you can see on caniuse.com, in January 2020, around 88% of all internet users can run
WebAssembly modules on their browsers.

Support of WebAssembly across browsers (01/2020)

Adding supports of a new binary format designed to be loaded and executed by Javascript
engines implied of course some huge modi�cation on the source code i.e. from a researcher point
of view, a new attack surface to discover

https://caniuse.com/#search=wasm

1/29/2020 Fuzzing JavaScript WebAssembly APIs with Dharma/Domato (Chrome/v8)

https://webassembly-security.com/fuzzing-wasm-javascript-dharma-chrome-v8/ 3/8

Notably, some security issues related to WebAssembly APIs has been found in V8, WebKit and
Firefox by Natalie Silvanovich (@natashenka) but also in the closed-source Xiaomi Mi6 Browser by
@�uoroacetate with CVE-2019-6743.

If you want to discover more about existing WebAssembly browser CVEs, take a look at those
links:

The Problems and Promise of WebAssembly by natashenka – blogpost, slides
A collection of JavaScript engine CVEs with PoCs – github
Apple Safari Wasm Section Exploit CVE 2018-04-16 by MWR-labs – write-up

2. WebAssembly JavaScript APIs

WebAssembly JavaScript APIs are composed of multiple methods and WebAssembly object
constructors used to created and instantiate wasm modules, such as:

WebAssembly.instantiate() method.
WebAssembly.compile() method.
WebAssembly.validate() method.
WebAssembly.Global() object.
WebAssembly.Module() object.
WebAssembly.Instance() object.
WebAssembly.Memory() object.
WebAssembly.Table() object.

Those APIs are our �rst targets for fuzzing since they are involved in multiple CVEs and they
are common to every browser/JavaScript engine implementation. More details about those
APIs and their syntaxes can be found here:

WebAssembly by Mozilla MDN – link
WebAssembly Web API by W3C – link
Understanding the JS API – link

3. Create Dharma/Domato WebAssembly APIs grammars

https://twitter.com/natashenka
https://twitter.com/fluoroacetate
https://www.zerodayinitiative.com/advisories/ZDI-19-366/
https://googleprojectzero.blogspot.com/2018/08/the-problems-and-promise-of-webassembly.html
https://i.blackhat.com/us-18/Thu-August-9/us-18-Silvanovich-The-Problems-and-Promise-of-WebAssembly.pdf
https://github.com/tunz/js-vuln-db/search?q=WebAssembly&unscoped_q=WebAssembly
https://labs.f-secure.com/assets/BlogFiles/apple-safari-wasm-section-vuln-write-up-2018-04-16.pdf
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/instantiate
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/compile
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/validate
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/Global
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/Module
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/Instance
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/Memory
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/Table
https://developer.mozilla.org/en-US/docs/WebAssembly
https://www.w3.org/TR/wasm-web-api-1/
https://webassembly.org/getting-started/js-api/

1/29/2020 Fuzzing JavaScript WebAssembly APIs with Dharma/Domato (Chrome/v8)

https://webassembly-security.com/fuzzing-wasm-javascript-dharma-chrome-v8/ 4/8

Dharma is a generation-based, context-free grammar fuzzer created in 2015 by Christoph Diehl
from Mozilla Security team. The goal of this tool is to generate �les (like Javascript and/or
HTML) based on a given grammar description. This concept look maybe familiar to you if you
already played with Domato by Ivan Fratric from Google Project Zero.

Personally, I prefer the grammar syntax of Dharma but if you are a Domato adept, converting
the following grammar to Domato shouldn’t be di�cult

Dharma grammar for WebAssembly.Global object

The most time consuming part is to read all the speci�cation and/or APIs descriptions in order
to create valid wasm objects and methods calls. I will not detailed Dharma grammar syntax in
this blogpost but you can �nd a complete grammar cheatsheet on the o�cial github repository
of Dharma. Once your grammar seems acceptable, you can generate multiple �les using this
command:

https://github.com/MozillaSecurity/dharma
https://twitter.com/posidron
https://github.com/googleprojectzero/domato
https://twitter.com/ifsecure
https://github.com/MozillaSecurity/dharma#dharma-grammar-cheatsheet

1/29/2020 Fuzzing JavaScript WebAssembly APIs with Dharma/Domato (Chrome/v8)

https://webassembly-security.com/fuzzing-wasm-javascript-dharma-chrome-v8/ 5/8

dharma -grammars dharma/wasm.dg -count 100 -format js -seed 1337 -

storage output_folder

Your output folder should now contain multiple JavaScript �les similar to the following picture.

Snippet of WebAssembly APIs calls generated by our dharma grammar

I just published a simple WebAssembly grammar in this github repository if you need
something to start I also invited you to read the following blogposts to discover how other
researchers are using Dharma or Domato

Vulnerability Discovery Against Apple Safari by ret2systems – link
Implementing fuzz logics with dharma by Mat Powell – link
Domato Fuzzer’s Generation Engine Internals by Jaewon Min – link
Fuzzing PHP with Domato by Andrew Kramer – link
Using dharma to rediscover node.js out-of-band write in utf8 decoder by NibbleSecurity –
link

4. JavaScript engines built with ASan (Chrome/V8)

In this blogpost, I will only target Chrome/V8 because it’s the best way for you (readers) to
reproduce blogpost’s steps at home without spending hours in compilation/debugging. Just a
quick reminder, AddressSanitizer (ASan) is a memory error detector based on compiler
instrumentation (LLVM) and used to detect multiple kind vulnerabilities (UaF, HBoF, etc.)

Here is the main reasons why I choose Chrome/V8 as a �rst choice:

Google provide pre-built Chrome binaries built with AddressSanitizer i.e. no compilation for me
today
One of the binary provided is d8, the V8’s own developer command line shell.
You can specify to d8 (through cmd line option) if you want to activate under-development
WebAssembly features (like anyref, threads, simd, etc.)

https://github.com/pventuzelo/fuzzing_browsers_wasm_js
https://blog.ret2.io/2018/06/13/pwn2own-2018-vulnerability-discovery/#synthesizing-javascript-with-grammars
https://www.thezdi.com/blog/2019/1/31/implementing-fuzz-logics-with-dharma
https://sigpwn.io/blog/2018/4/14/domato-fuzzers-generation-engine-internals
https://blog.jmpesp.org/2020/01/fuzzing-php-with-domato.html
http://blog.nibblesec.org/2015/08/using-dharma-to-rediscover-nodejs-out.html
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/asan.md#pre_built-chrome-binaries
https://v8.dev/docs/d8

1/29/2020 Fuzzing JavaScript WebAssembly APIs with Dharma/Domato (Chrome/v8)

https://webassembly-security.com/fuzzing-wasm-javascript-dharma-chrome-v8/ 6/8

Pre-built are fresh (up to date) and easy to download using Google gsutil tool and the following
command.
gsutil cp $(gsutil ls "gs://chromium-browser-asan/linux-release/asan-

linux-release-*.zip" | tail -1) .

If you are looking to compile other JavaScript engines with ASan, check instructions in the links
bellow:

Building WebKit/JSC with ASan – link
Firefox/Spidermonkey ASan builds + compilation intructions – link
V8 build tests with ASan – link

5. Fuzzing & monitoring - the lazy way

Last but not least, we need to provide our JS �les to d8. An easy way to start can be to create a
simple bash script (like this one) that will loop and:

execute d8 binary for each js �le generated by Dharma
monitor the returned signal value of the program
store the testcase for analysis if the signal is not null.

This logic here is really basic and not optimal off course. If you don’t want to wrote some shell
script, I can only suggest you to try the lazy way i.e. generate a lot of test-cases and let honggfuzz
deal with them.

Honggfuzz dry-run with ASan d8 build and dharma generated �les

Honggfuzz is really easy-to-use and awesome fuzzer developed and maintained by Robert
Swiecki from Google. During honggfuzz “dry-run”, all given �les will be executed in different
threads, monitored for crashes and stored if relevants. That also mean that only using the
following command-line, you let honggfuzz handle everything and can go to sleep

https://cloud.google.com/storage/docs/gsutil
https://trac.webkit.org/wiki/ASanWebKit
https://developer.mozilla.org/en-US/docs/Mozilla/Testing/Firefox_and_Address_Sanitizer
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/asan.md#build-tests-with-asan
https://github.com/pventuzelo/fuzzing_browsers_wasm_js/blob/master/fuzzing_d8_asan.sh
https://github.com/google/honggfuzz
https://github.com/google/honggfuzz
https://twitter.com/robertswiecki?lang=en

1/29/2020 Fuzzing JavaScript WebAssembly APIs with Dharma/Domato (Chrome/v8)

https://webassembly-security.com/fuzzing-wasm-javascript-dharma-chrome-v8/ 7/8

honggfuzz -t 5 -n 4 -i input_wasm_js/ -- ./d8 ___FILE___

Note: I noticed during my research that someone also integrate dharma directly into honggfuzz. I
let you the check here, but personally I was not able to make it work :s

5. Going deeper & Conclusion

Congratz, you are now able to fuzz V8 WebAssembly APIs using generation-based fuzzers. The
previous dharma grammar is really speci�c to WebAssembly APIs and should be improved to
handle more generic JavaScript methods/objects (Array, UIntArray, Number, etc.). Also, another
grammar should be created to generate valid WebAssembly module bytecode, stored inside
ArrayBuffer or TypedBuffer and provided to the WebAssembly.Module() constructor.

Grammar and script shown in this blogpost are available in this github repository. Final reminder, If
you want to learn/discover more about WebAssembly security (both reversing and fuzzing), my
next public trainings will be in:

29 March – 01 April 2020 / Singapore ==> SHACK/WhiskeyCon.
20 – 22 April 2020 / Amsterdam ==> HITB.
01 – 04 August 2020 / Las Vegas ==> Ringzer0.
Onsite trainings ==> here.

Patrick Ventuzelo / @Pat_Ventuzelo

UPCOMING TRAININGS

REQUEST ON-SITE QUOTE

© 2019 - Patrick Ventuzelo | Contact | Trainings

https://github.com/Sbouber/honggfuzz-dharma
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/Module
https://github.com/pventuzelo/fuzzing_browsers_wasm_js
https://webassembly-security.com/trainings/
https://www.coseinc.com/shack/training#training-SH2041
https://www.coseinc.com/shack/training#training-SH2041
https://conference.hitb.org/hitbsecconf2020ams/sessions/3-day-training-4-webassembly-security-from-reversing-to-vulnerability-research/
https://ringzer0.training/webassembly-security.html
https://webassembly-security.com/on-site-training/
https://twitter.com/Pat_Ventuzelo
https://twitter.com/Pat_Ventuzelo
https://www.linkedin.com/in/patrick-ventuzelo/
https://github.com/pventuzelo
https://webassembly-security.com/trainings/
https://webassembly-security.com/on-site-training/
https://patrickventuzelo.com/
https://webassembly-security.com/trainings/#contact
https://webassembly-security.com/trainings/

1/29/2020 Fuzzing JavaScript WebAssembly APIs with Dharma/Domato (Chrome/v8)

https://webassembly-security.com/fuzzing-wasm-javascript-dharma-chrome-v8/ 8/8

