
1/29/2020 How to create polyglot HTML/JS/Wasm module | WebAssembly Security

https://webassembly-security.com/polyglot-webassembly-module-html-js-wasm/ 1/13

WebAssembly Security

How to create polyglot
HTML/JS/WebAssembly module

Just a bit of context �rst, so last month I was at the hack.lu conference to give a workshop about
“Reversing WebAssembly module 101” and spend some amazing time with friends. Workshop
goes well, attendees were really interested and even better I received the award of the best
talk/workshop of hack.lu

At the bar during the conference, I was talking with Ange Albertini (@angealbertini) i.e. in my
opinion, the “Polyglot Grand Master and File Format Ninja” ©. The result of this discussion is this
short blogpost to share with you, Ange was right and creating polyglot �le is not so complicated

In this blogpost, I will �rst explain the WebAssembly binary format and its sections. Then, I’ll
demonstrate how to create a valid polyglot wasm module that contain an html/js payload
embedded using 2 different techniques. Finally, I’ll give you the link to the github repository if you
want to try on your own and learn more about WebAssembly

Just a quick reminder before we start, if you are interested about WebAssembly security, my next
public 4-days training will be:

29 March – 01 April 2020 / Singapore ==> SHACK/WhiskeyCon.
20 – 22 April 2020 / Amsterdam ==> HITB.
01 – 04 August 2020 / Las Vegas ==> Ringzer0.
Onsite trainings ==> here.

https://webassembly-security.com/
https://cfp.hack.lu/hacklu19/talk/CVA39H/
https://2019.hack.lu/
https://twitter.com/angealbertini
https://advancedsecurity.training/events/berlin-wasm-spring-2020/
https://www.coseinc.com/shack/training#training-SH2041
https://conference.hitb.org/hitbsecconf2020ams/sessions/3-day-training-4-webassembly-security-from-reversing-to-vulnerability-research/
https://ringzer0.training/webassembly-security.html
https://webassembly-security.com/on-site-training/

1/29/2020 How to create polyglot HTML/JS/Wasm module | WebAssembly Security

https://webassembly-security.com/polyglot-webassembly-module-html-js-wasm/ 2/13

My awesome award from hack.lu

1. What's a polyglot �le?

1/29/2020 How to create polyglot HTML/JS/Wasm module | WebAssembly Security

https://webassembly-security.com/polyglot-webassembly-module-html-js-wasm/ 3/13

Let’s start by the de�nition of Wikipedia:

“a polyglot is a computer program or script written in a valid form of multiple programming
languages, which performs the same operations or output independent of the programming

language used to compile or interpret it”.

In my opinion, this de�nition is too restrictive and too speci�c to “Polyglot Programming”. A
polyglot �le, after being executed/parsed by different programs, will rarely lead to the same output.
For example, Javascript/BMP polymorphic �les has been used in the wild to hide malicious
payload only if the �le is interpreted as a JS �le. If you want to discover more about polymorphic
�les, you should take a look at the following ressources:

“Funky File Formats” talk by @angealbertini – slides, video
Compilation of polyglots ressources – github
𝑻𝒓𝒖𝒆𝑷𝒐𝒍𝒚𝒈𝒍𝒐𝒕 project – website, github

2. WebAssembly binary format, in short.

So, the �rst bytes of a valid WebAssembly module are the magic number ‘\0asm’ (i.e. null byte
ASM). Following, there is a 4 bytes version number, �xed to the value 0x1 since the release of
MVP 1.0.

This preamble of 2 �elds is enough to create a valid WebAssembly module but if you change
the value of this version �eld, some WebAssembly parsers and VMs will reject your module.

WebAssembly module header

https://en.wikipedia.org/wiki/Polyglot_(computing)
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Script_(computer_programming)
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Interpreter_(computing)
https://www.bleepingcomputer.com/news/security/malvertising-attack-sneaks-javascript-payload-in-polyglot-images/
https://twitter.com/angealbertini
https://fahrplan.events.ccc.de/congress/2014/Fahrplan/system/attachments/2562/original/Funky_File_Formats.pdf
https://media.ccc.de/v/31c3_-_5930_-_en_-_saal_6_-_201412291400_-_funky_file_formats_-_ange_albertini
https://github.com/mindcrypt/polyglot
https://truepolyglot.hackade.org/
https://github.com/ansemjo/truepolyglot

1/29/2020 How to create polyglot HTML/JS/Wasm module | WebAssembly Security

https://webassembly-security.com/polyglot-webassembly-module-html-js-wasm/ 4/13

Creating a minimal wasm module in one line

The module preamble is followed by a sequence of sections. Each section is identi�ed by a 1-
byte section code (0-11) that encodes either a known section or a custom section. Each known
section is optional and may appear at most once.

I’ll not detailed more in this blogpost which king of information you will �nd in each known
sections, but if you want to go deeper, start looking here:

WebAssembly Binary Encoding – link
Introduction to WebAssembly – link
Understanding WebAssembly text format – link

WebAssembly module know sections

https://github.com/WebAssembly/design/blob/master/BinaryEncoding.md#binary-encoding
https://rsms.me/wasm-intro
https://developer.mozilla.org/en-US/docs/WebAssembly/Understanding_the_text_format

1/29/2020 How to create polyglot HTML/JS/Wasm module | WebAssembly Security

https://webassembly-security.com/polyglot-webassembly-module-html-js-wasm/ 5/13

3. HelloWorld & WebAssembly Data section

Let’s start with a basic “HelloWorld”. WebAssembly module can be compiled from C/C++/Rust/
… source code or directly written using the WebAssembly text representation (wat/wast).

The following module (right-picture) will return the offset of the string “hello from WebAssembly
!” when the function “hello” will be called by a VM. This offset is a pointer to the string stored in
the linear memory, i.e. the memory shared by the wasm module and the WebAssembly VM.

As you can see, this data section allow us to store completely arbitrary strings inside a module,
exactly what we need to inject some HTML/JS payloads.

Disassembly - HelloWorld in WebAssembly text format

4. WebAssembly Custom section

The data section is actually not the only section that can be used to store arbitrary strings. The
custom section have been exactly designed with this goal in mind. For example, if a developer
want to store DWARF debug information inside a module, during compilation of the module, a
bunch of customs sections will be embedded in the wasm �le itself with different DWARF section
name for each (ex: .debug_info, .debug_line, etc.).

Injection of arbitrary strings/payload using this technique will only require to calculate correctly
�elds lengths to create a valid custom section.

https://developer.mozilla.org/en-US/docs/WebAssembly/Understanding_the_text_format
https://yurydelendik.github.io/webassembly-dwarf/

1/29/2020 How to create polyglot HTML/JS/Wasm module | WebAssembly Security

https://webassembly-security.com/polyglot-webassembly-module-html-js-wasm/ 6/13

Custom section need to have the name & name_len �eld

5. Awesome HTML/JS payload needed!

1/29/2020 How to create polyglot HTML/JS/Wasm module | WebAssembly Security

https://webassembly-security.com/polyglot-webassembly-module-html-js-wasm/ 7/13

HTML/JS payload to inject inside the module

Since I’m not an expert in polyglot �le, I’ve asked @angealbertini and he kindly provided me this
HTML/JS payload. In short, the payload use InnerHTML to prevent the browser to parse the
totality of the �le. It should be possible to create another valid payload without InnerHTML but no
need to make your life more complicated More details about this payload and trick can be
found here.

Finally, this payload needs to be embedded inside a WebAssembly module using either the data
section or a custom section.

https://twitter.com/angealbertini
https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML
https://github.com/angea/pocorgtfo/blob/master/writeups/19/README.md#write-up

1/29/2020 How to create polyglot HTML/JS/Wasm module | WebAssembly Security

https://webassembly-security.com/polyglot-webassembly-module-html-js-wasm/ 8/13

6. Data section injection (1st technique)

Let’s start with the easiest technique �rst. I choose to directly modify the WebAssembly text
representation of the previous helloworld module and I’ve added an extra line to it:
(data (i32.const 42) "PAYLOAD_HERE")

This line will create a new “segment”, into the data section of the module, with my payload
inside. Then, I’ve translate this wasm text �le to a wasm module (named
wasm_polyglot_data.wasm) using wat2wasm.

Payload injected in the data section using wasm text format

https://github.com/pventuzelo/wasm-polyglot/blob/master/data_section/wasm_polyglot_data.wasm
https://github.com/WebAssembly/wabt#running-wat2wasm-and-wast2json

1/29/2020 How to create polyglot HTML/JS/Wasm module | WebAssembly Security

https://webassembly-security.com/polyglot-webassembly-module-html-js-wasm/ 9/13

7. Custom section injection (2nd technique)

For this second technique, I just create a simple python script (available here) that take my
payload and my helloworld module in order to concatenate them into one single binary �le
(named wasm_polyglot_custom.wasm). Only particularity, I’ve inject the custom section (with
the html/js payload inside) at the beginning of the �nal wasm module i.e. just after the
Webassembly header. This custom section becomes the �rst section of the module but it does
not affect module validation.

Finally, you can verify the internal structure of your module with wasmcodeexplorer and you
should get something similar to the following screenshot.

wasmcodeexplorer - polyglot wasm using custom section

https://github.com/pventuzelo/wasm-polyglot/blob/master/custom_section/polyglot_custom_generator.py
https://github.com/pventuzelo/wasm-polyglot/blob/master/custom_section/wasm_polyglot_custom.wasm
https://wasdk.github.io/wasmcodeexplorer/

1/29/2020 How to create polyglot HTML/JS/Wasm module | WebAssembly Security

https://webassembly-security.com/polyglot-webassembly-module-html-js-wasm/ 10/13

8. Is it working?

First, we need to check if our new WebAssembly modules are still valid:

wasm_polyglot_data.wasm
wasm_polyglot_custom.wasm

You can use standalone tools like wasm-validate or you can directly try to instantiate those
modules with a WebAssembly VM like wasmer, wasmtime or WAVM. Using Javascript, you can
use the WebAssembly.validate() or WebAssembly.instantiate() APIs.

For your veri�cation, run a web server locally and open this script (picture on the right – source
here). You should get some messages logs in the developer JS console. In short, this script will
fetch our polyglot wasm module, call the exported function hello() and �nally print the
helloworld string.

https://github.com/pventuzelo/wasm-polyglot/blob/master/data_section/wasm_polyglot_data.wasm
https://github.com/pventuzelo/wasm-polyglot/blob/master/custom_section/wasm_polyglot_custom.wasm
https://webassembly.github.io/wabt/doc/wasm-validate.1.html
https://github.com/wasmerio/wasmer
https://github.com/bytecodealliance/wasmtime
https://github.com/WAVM/WAVM
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/validate
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/instantiate
https://github.com/pventuzelo/wasm-polyglot/blob/master/data_section/loader_wasm.html

1/29/2020 How to create polyglot HTML/JS/Wasm module | WebAssembly Security

https://webassembly-security.com/polyglot-webassembly-module-html-js-wasm/ 11/13

JS logs when polyglot instantiated and called using WebAssembly API

Now, rename the polyglot �le extension from .wasm to .html, open the �le in your browser and
you should see the following alert message !

Alert when polyglot �le interepreted as an HTML �le by the browser

1/29/2020 How to create polyglot HTML/JS/Wasm module | WebAssembly Security

https://webassembly-security.com/polyglot-webassembly-module-html-js-wasm/ 12/13

Simple JS script calling hello wasm function

If you try to directly fetch the wasm_polyglot.html �le using instantiateStreaming(), you will get this
Javascript error message: "Failed to execute 'compile' on 'WebAssembly':
Incorrect response MIME type. Expected 'application/wasm'."

You can bypass this MIME veri�cation by fetching the module, storing the buffer content and
�nally compile/instantiate the module using other WebAssembly APIs

9. Conclusion

I hope that you have learn and discover some new WebAssembly tricks over this blogpost ;). Of
course, if you want to go deeper after the reading, you can try to apply those techniques with the
data & custom section to create PDF/GIF/… polyglot WebAssembly module. Thanks again to Ange
Albertini (@angealbertini) for the payload and advises regarding polyglot �les in general !!

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/instantiateStreaming
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly
https://twitter.com/angealbertini

1/29/2020 How to create polyglot HTML/JS/Wasm module | WebAssembly Security

https://webassembly-security.com/polyglot-webassembly-module-html-js-wasm/ 13/13

All the WebAssembly module, JS �les and scripts shown in this blogpost are available in this
github repository. Final reminder, If you want to learn/discover more about WebAssembly security,
my next public 4-days training will be:

29 March – 01 April 2020 / Singapore ==> SHACK/WhiskeyCon.
20 – 22 April 2020 / Amsterdam ==> HITB.
01 – 04 August 2020 / Las Vegas ==> Ringzer0.
Onsite trainings ==> here.

Patrick Ventuzelo / @Pat_Ventuzelo

  

UPCOMING TRAININGS

REQUEST ON-SITE QUOTE

© 2019 - Patrick Ventuzelo | Contact | Trainings

https://github.com/pventuzelo/wasm-polyglot
https://advancedsecurity.training/events/berlin-wasm-spring-2020/
https://www.coseinc.com/shack/training#training-SH2041
https://conference.hitb.org/hitbsecconf2020ams/sessions/3-day-training-4-webassembly-security-from-reversing-to-vulnerability-research/
https://ringzer0.training/webassembly-security.html
https://webassembly-security.com/on-site-training/
https://twitter.com/Pat_Ventuzelo
https://twitter.com/Pat_Ventuzelo
https://www.linkedin.com/in/patrick-ventuzelo/
https://github.com/pventuzelo
https://webassembly-security.com/trainings/
https://webassembly-security.com/on-site-training/
https://patrickventuzelo.com/
https://webassembly-security.com/trainings/#contact
https://webassembly-security.com/trainings/

