2/18/2020 Fuzz testing in WebAssembly VMs - Wasmer - Medium

Fuzzing Wasm VMs

Fuzz testing in WebAssembly VMs

Patrick Ventuzelo
Feb 18 - 4 min read
Fuzzing or fuzz testing is an automated testing technique that involves providing invalid,

unexpected, or random data as inputs to a program to find bugs that would be otherwise

hard to find with manual generated input. — Wikipedia

In the last months I've been working developing fuzzing targets to find bugs and create

patches for the Wasmer WebAssembly runtime.

In this post we will learn what is fuzzing, why it is important for WebAssembly runtimes

and what kind of bugs fuzzing helped to detect.

Quick summary
After studying Wasmer codebase using static code analysis and code review I
understood the global architecture and which parts of the code should be executed

https://medium.com/wasmer/fuzz-testing-in-webassembly-vms-3a301f982e5a 1/5


https://medium.com/@ventuzelo.patrick?source=post_page-----3a301f982e5a----------------------
https://medium.com/@ventuzelo.patrick?source=post_page-----3a301f982e5a----------------------
https://medium.com/wasmer/fuzz-testing-in-webassembly-vms-3a301f982e5a?source=post_page-----3a301f982e5a----------------------
https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Random_data
https://en.wikipedia.org/wiki/Fuzzing
https://wasmer.io/

2/18/2020 Fuzz testing in WebAssembly VMs - Wasmer - Medium

more often. Then, I developed multiple fuzz targets to test and improve the resilience of
the Wasmer runtime.

As a result of my journey with Wasmer, around 20 issues has been reported and fixed
in the codebase including 5 bugs in external libraries that the Wasmer runtime
depends on.

What is fuzzing ?

Here is a global overview of the fuzzing process:

1. You create a set of input test cases (i.e the corpus)
2. Fuzz engine will pick and mutate (randomly) one input sample.
3. Input is executed by Wasmer and coverage paths are recorded.

4. When new paths are reached, current input sample is stored in the corpus to be re-
used later.

5. If fuzz target crash, crashing sample is stored on the side for later analysis by the

user.

Results

New Inputs

Fuzz Engine

Mutated Inputs Sanitizer

Coverage Callbacks
Callbacks
T > il Sanitizer
Target | APical to Test Sanitizer
Callbacks

https://medium.com/wasmer/fuzz-testing-in-webassembly-vms-3a301f982e5a 2/5


https://github.com/wasmerio/wasmer

2/18/2020 Fuzz testing in WebAssembly VMs - Wasmer - Medium

Fuzz testing overview with LibFuzzer. Source

During this journey I have used multiple fuzzing engines (cargofuzz, afl-rs, honggfuzz)
to optimize our chance to trigger bugs since fuzzing/mutation algorithms are different

for each engine.

Fuzzing is essential to find bugs, but it has also key advantages for developers.
As you have seen, during the fuzzing process, samples reaching new coverage paths are
stored, meaning that your fuzzing engine will generate reusable testing samples on its

OWI1.

Why is Fuzzing important for WebAssembly runtimes?

WebAssembly describes a memory-safe, sandboxed execution environment that may even

be implemented inside existing JavaScript virtual machines.

As defined in official WebAssembly website, WebAssembly virtual machines (VMs)
should be Safe and allow Execution of untrusted code through a sandboxed

environment.

Fuzzing WebAssembly runtimes will allow you to detect code paths that caused:

Runtime engines instability/crash.

Unwanted interaction with the host system.

Unsupported WebAssembly opcodes/features.

Regression bugs.

In regards to Wasmer, multiple fuzz targets has been developed to executed all
available backends (LLVM, Singlepass, Cranelift) and ABIs (Emscripten, WASI)

currently supported.

Which kind of bugs did we prevent?

Wasmer runtime is fully written in Rust. Even if it’s a memory safe language, it doesn’t

mean Rust code will be exempt from bugs/vulnerabilities.

https://medium.com/wasmer/fuzz-testing-in-webassembly-vms-3a301f982e5a 3/5


https://fuchsia.dev/fuchsia-src/development/testing/fuzzing/libfuzzer
https://github.com/rust-fuzz/cargo-fuzz
https://github.com/rust-fuzz/afl.rs
https://github.com/rust-fuzz/honggfuzz-rs
https://webassembly.org/
https://github.com/wasmerio/wasmer
https://www.rust-lang.org/

2/18/2020 Fuzz testing in WebAssembly VMs - Wasmer - Medium
During this fuzzing journey, multiple bugs that caused Wasmer to panic have been
found. The impact those bugs really depended on how you were using Wasmer
instance. In the most critical case, those bugs are leading to a Denial Of Service (DoS)

of the Wasmer runtime engines, which now have been fully resolved.

Here is a global overview of the type of bugs patched:

Type of Rust errors/bugs leading to panics

substration overflow
9,1%

unimplemented! macro
9,1%

panic! macro
182%

unwrap macro
182%

expect macro
4,5%

assertion failed
13.6%

index out of bound
27.3%

Wasmer reported bugs after fuzzing

As you can see in the following pie chart, bugs leading to panics are mainly due to
unchecked values, or verified and caught at runtime by Rust (like index out of bounds,
unwrap, substration overflow)

The other bugs leading to panics are macros and functions often used by developers
during under development code like panic!(), assert(), unimplemented!() and

expect() .

Community contribution

This fuzzing adventure at Wasmer also helped to find and resolve bugs in 3rd party

libraries used by Wasmer like:

https://medium.com/wasmer/fuzz-testing-in-webassembly-vms-3a301f982e5a 4/5



2/18/2020 Fuzz testing in WebAssembly VMs - Wasmer - Medium
wasmparser: This Rust library is used for parsing WebAssembly binary files and we
reported two assertion failures (#122 & #139) and one index out of bound panic
(#126).

cranelift: Code generator library used as one possible backend by Wasmer to generate
executable machine code (assembly) from WebAssembly bytecode. In this library, we

reached a call to panic! macro (#1257) and triggered one assertion failure (#1306).

Conclusion

Whatever the complexity of your project code base, it’s important to setup fuzzing
targets during development and ideally integrate continuous fuzzing process as soon as

possible.

If you are interested in learning more about this topic, I would like to invite you to
check WebAssembly Security.

Here’s our Wasm Fuzz repo, check it out!

wasmerio/wasm-fuzz

Fuzzer for Wasm and Wasmer.

github.com

Let the fuzzing journey begin! 3%
Thanks to Mark McCaskey (declined).

Fuzzing Security Webassembly Development Testing

https://medium.com/wasmer/fuzz-testing-in-webassembly-vms-3a301f982e5a 5/5


https://github.com/bytecodealliance/wasmparser
https://github.com/bytecodealliance/wasmparser/issues/122
https://github.com/bytecodealliance/wasmparser/issues/139
https://github.com/bytecodealliance/wasmparser/issues/126
https://github.com/bytecodealliance/cranelift
https://github.com/bytecodealliance/cranelift/issues/1257
https://github.com/bytecodealliance/cranelift/issues/1306
https://webassembly-security.com/
https://github.com/wasmerio/wasm-fuzz
https://medium.com/tag/fuzzing
https://medium.com/tag/security
https://medium.com/tag/webassembly
https://medium.com/tag/development
https://medium.com/tag/testing
https://medium.com/?source=post_page-----3a301f982e5a----------------------
https://medium.com/about?autoplay=1&source=post_page-----3a301f982e5a----------------------
https://help.medium.com/?source=post_page-----3a301f982e5a----------------------
https://medium.com/policy/9db0094a1e0f?source=post_page-----3a301f982e5a----------------------

